- 发布时间:2022-12-13
- 作者:光明实验室
- 浏览:3441次
夏有华
特聘副研究员
学习&工作经历:
2016年6月毕业于福建师范大学,获计算机应用技术硕士学位;
2022年12月毕业于武汉大学,获计算机科学博士学位。
博士期间主要从事车联网中的调度算法研究,参与车联网的协作机制及可靠通信方法研究、基于5G和云平台的智能交通关键技术研究等。近年来,作为审稿人参与IEEE Transactions on Vehicular Technology, The Journal of Supercomputing等期刊的论文评审工作。迄今,已在IEEE Internet of Things Journal、IEEE Transactions on Vehicular Technology等刊物发表论文十余篇,参与国家自然科学基金项目四余项,申请专利三余项。
邮箱:xiayouhua@gml.ac.cn
研究领域:大型语言模型,强化学习,车联网,智能交通,机器学习,区块链和隐私保护
代表性成果:
1. Xia Y, Wu L, Zheng X, Yu T, Jin J. Data Dissemination With Trajectory Privacy Protection for 6G-Oriented Vehicular Networks[J]. IEEE Internet of Things Journal, 2022, 9(21): 21469-21480.
2. Xia Y, Zhang T, Wu L, Zheng X, Jin J. Privacy-Preserving Data Scheduling in Incentive-Driven Vehicular Network[J]. IEEE Internet of Things Journal, 2022, 9(22): 22669-22681.
3. Xia Y, Wu L, Wang Z, Zheng X, Jin J. Cluster-enabled cooperative scheduling based on reinforcement learning for high-mobility vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12664-12678.
发表论文论著:
1. Xia Y, Wu L, Zheng X, Yu T, Jin J. Data Dissemination With Trajectory Privacy Protection for 6G-Oriented Vehicular Networks[J]. IEEE Internet of Things Journal, 2022, 9(21): 21469-21480.
2. Xia Y, Zhang T, Wu L, Zheng X, Jin J. Privacy-Preserving Data Scheduling in Incentive-Driven Vehicular Network[J]. IEEE Internet of Things Journal, 2022, 9(22): 22669-22681.
3. Xia Y, Wu L, Wang Z, Zheng X, Jin J. Cluster-enabled cooperative scheduling based on reinforcement learning for high-mobility vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12664-12678.
4. Xia Y, Wu L, Jin J, et al. Privacy-aware key task scheduling in vehicular networks based on incentive mechanism[C]//2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2020: 1030-1035.
5. Dibaei M, Zheng X, Xia Y, et al. Investigating the prospect of leveraging blockchain and machine learning to secure vehicular networks: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(2): 683-700.
申请专利:
1. 吴黎兵,夏有华,王志波,夏振厂. 一种基于激励机制的车联网隐私感知数据调度方法 申请(专利)号:CN202010111580.7 申请公布号:CN111314883A